ALGEBRA LINEARE

Primo appello 18/01/2016

Esercizio 1

Discutere, al variare del parametro reale a la risolubilità del sistema seguente.

$$\begin{cases} x - y = a \\ 2x + (a+1)z = a \\ -x + 2y = 1 \end{cases}$$

Esercizio 2.

Sia $A: \mathbb{R}^3 \to \mathbb{R}^3$ una matrice 3×3 a coefficienti reali pensata come applicazione lineare. Si supponga che esista una base ortonormale di \mathbb{R}^3 , u_1, u_2, u_3 che sia anche formata da autovettori di A.

- 1. Dimostrare che per ogni $X, Y \in \mathbb{R}^3$, $(AX) \cdot Y = X \cdot (AY)$.
- 2. Dimostrare che A è simmetrica.

Suggerimento: scrivere X e Y come combinazioni lineari di u_1, u_2, u_3 .

Esercizio 3.

Sia $T_a:\mathbb{R}_3[x]\to\mathbb{R}_3[x]$, dove a è un parametro reale, l'applicazione cosí definita:

$$T_a(p(x)) = x \cdot (p(ax+1))'$$

(la derivata rispetto a x di p(ax + 1) moltiplicata per x).

- 1. Dimostrare che T_a è lineare per ogni valore di a.
- 2. Scrivere la matrice associata a T_a rispetto alla base canonica $1, x, x^2, x^3$ di $\mathbb{R}_3[x]$ e verificare che tale matrice è triangolare superiore.
- 3. Per quali valori di a T_a è diagonalizzabile?